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Introduction 

a-C:H 
flakes 

JET Divertor 
in ‘97 

inner louvers 

why a whole lesson on erosion? 

  lifetime considerations 

  source of codeposition   

 Plasma cooling & dilution 
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Introduction 

experimental approach 

? Surface temperature 
? Incident particle flux 
? Incident particle energy 
? Incident flux compositions 

Need control over these parameters 
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erosion of target materials with j<1019 m-2s-1, 100 eV < E < keV  

detection of erosion products by mass spectrometry or weight loss measurements 

e.g.  
D3

+ 
3 keV 

e.g. High Current Ion Source IPP Garching 

Introduction 
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Physical sputtering 

Molecular Dynamics simulation of 50eV He  Be 

 Energetic particle impact involves a 
complex collision cascade during 
which: 

 The projectile may be reflected 
back out of the surface 

 Surface atoms may be ejected 
out from the surface (= physical 
sputtering) 

 The surface may be left with 
crystal damage. 

Energetic particle impact is a stochastic process and is therefore described by 
giving average yields for the different processes 

 The projectile may remain in the 
surface (=implantation) 



K. Schmid 2009 

• Physical sputtering is the kinetic ejection of surface 
atoms by incident energetic ions or atoms due to 
collision processes. 

• As surface atoms can escape only if it receives an 
energy larger than the surface binding energy, a 
threshold energy for the incident particles is 
required. 

•  In fusion application physical sputtering by 
hydrogen ions and atoms is important, but also the 
self-sputtering due to returning impurity atoms. 

Physical sputtering 
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•  TRIM Monte-Carlo Code 
simulation 

Heavy ions: 
•  large collision cascade 
•  isotropic velocity distribution 
•  yield proportional to energy 

deposited in first two layers 

Light ions: 
•  few collisions 
•  energy transfer in single 

collision 
•  Momentum inversion in two 

or more collisions 
•  Sputtering occurs mostly by 

reflected particles 

•    

Physical sputtering 



K. Schmid 2009 

stopping power 

W. Möller PSE 2002 Tutorial 

Physical sputtering 

 Stopping power is velocity dependent 

 Fast particles stopping 
dominated by Se 

 Slow particles stopping 
dominated by Sn 

E-ΔE 
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Physical sputtering 

Scattering cross section 

Scattering center 

Probabilty dw for a scattering event with a scattering angle θ +/- dθ 

NA areal density of scattering centers (i.e atoms) 
dσ(θ(b)) = Scattering cross section 
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Stopping power 
•  Projectiles and recoil atoms 

loose energy in elastic 
collisions (nuclear stopping) 
and collisions with electrons 
(inelastic stopping) 

•  Nuclear stopping increases for low 
energies. (Overcomes screening 
of coulomb potential) 

•  Nuclear stopping decreases for 
high energies. (E-2 dependence of 
scattering cross section) 

•  Nuclear stopping can be 
calculated for a given interaction 
potential (screened coulomb): 

Physical sputtering 
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Threshold energy 
•  Light ion sputtering in 

fusion application is 
dominated by threshold 
effects 

Physical sputtering 

•  Energy loss by nuclear 
stopping alone does not 
explain physical sputtering. 
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Ansatz: 
(P. Sigmund (1969)) 

Sputtering yield proportional to 
the energy deposited into 
collisions near the surface 

Y(ε)  α  Sn(ε)x=0/Es 

Y(ε)  =  Q(M1,M2,ES)*fH(ε) 

Es = Surface binding energy ≅ ΔH 
heat of sublimation 

Theory for sputtering in isotropic collision cascades  

Physical sputtering 
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Threshold function 

•  In the threshold regime all 
experimental data show a 
similar energy dependence 

•  normalized energy scale  
   E‘ = E/Eth 

•  Good fit to universal function 
with 

Physical sputtering 

Au 
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Systematics for light ions 

•  Similar yields in isotropic 
cascade regime 

•  Strong influence of Z2 on 
threshold energy Eth 

Physical sputtering 
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Systematics for self-sputtering & heavy ions 
•  No dependence of Eth on 

target mass, but on surface 
binding energy Es 

•  Strong dependence of yield 
on mass in isotropic 
cascade regime due to 
nuclear deposited energy. 

•  Most important is the yield 
range close to unity, as run-
away impurity production 
may occur 

Physical sputtering 
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angular dependence physical sputtering yield 
depends on: 
l  angle of incidence 
l  target roughness  

J. Roth, W. Eckstein et al., J. Nucl. Mater. 179-181, 34 (1991) 

highly-oriented, smooth graphite 

rough graphite 

enhanced yield at 
normal incidence 

Physical sputtering 

•  Maximum at ~70° 
•  For higher angles 

reflection increases  
sputtering decreases 
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quantitative description of physical sputtering 

J. Roth, E. Vietzke, A.A. Haasz; Atomic and Plasma-Material Interaction Data for Fusion, Suppl. to Nuclear Fusion 1 (1991) 63. 

the experimental data is 
fitted with the 
Bohdansky formula: 

C. Garcia-Rosales, W. Eckstein, J. Roth; J. Nucl. Mater. 218 (1994) 8-17. 

Eth 

Physical sputtering 
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Sputtering by non-recycling ions K.Schmid (2002) 

Physical sputtering 

 For non recycling impurities 
deposition and layer growth lead to 
complex mixed material formation  

 TRIM for static conditions 
 TRIDYN for dynamic conditions 

Static trim calculation 

Experiment & TRIDYN 
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physical sputtering 

•  Physical sputtering is the kinetic ejection of surface atoms by 
incident energetic ions or atoms due to collision processes 

  (playing pool with surface atoms). 

•  As surface atoms can escape only if it receives an energy larger 
than the surface binding energy, a threshold energy for the 
incident particles is required. 

•  In fusion application sputtering by hydrogen and helium ions and 
atoms is important, but also the self-sputtering due to returning 
impurity atoms. 



K. Schmid 2009 

Chemical Erosion 

•  Chemical erosion originates from the formation and release of 
volatile molecules in the interaction of incident plasma particles 
and target atoms. 

•  In fusion application the formation of hydrocarbons in the 
interaction of hydrogen atoms with carbon surfaces is the 
dominant example of chemical erosion 

•  As chemical reactions are involved, chemical erosion shows a 
strong temperature dependence in contrast to physical 
sputtering. 

•  Chemical erosion is due to interaction of thermal atoms and 
does not require a threshold energy. 
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Chemical erosion at room temperature 

•  threshold behaviour for Be, W 

•  advantage for high-Z materials 

•  no threshold for C 

   ⇒  what is different? 

 ⇒ chemical reactions between 
  D and C forming  
  volatile hydrocarbons 

D+ energy (eV) 
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sp 2 

Hydration and erosion circle: 
Horn et al., Chem. Phys. Lett. 231, 193 (1994) 
Zecho et alJ. Phys. Chem. B 105 (2001). 

chemical erosion 

1)  chemisorption of H on sp2 site 

H 

σ = 1.3 Å2 

H 

spx 

sp 3 

H 

σ = 1.3 Å2 

H CH 3
2)  chemisorption of H on spx site (hydration) 

3)  abstraction of H to form H2 

H 

H 2 

σ = 0.05 Å2 

CH 3

E
act =2.4 eV

 

6)  direct thermal decomposition to sp2 

 above 900 K with Eact=2.4 eV 

4 a) thermal release of CH3 radicals from 
   activated sites above 400 K 

Eact=1.6 eV 

CH 3

4 b) chemisorption of H on spx site 

σ = 1.3 Å2 

H 

5)  relaxation back to sp2 above 750 K 

Eact=1.7 eV 

microscopic model for erosion of graphite by H0 
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• hydration at room temperature of more than 90% 
   of all possible adsorption sites 

chemical erosion: microscopic model 

•  • erosion maximum as function of 
temperature 

Hydration and erosion circle: 
Horn et al., Chem. Phys. Lett. 231, 193 (1994) 
Zecho et alJ. Phys. Chem. B 105 (2001). 

sp 2 

H 

σ = 1.3 Å2 

H 

spx 

sp 3 

H 

σ = 1.3 Å2 

H CH 3
H 

H 2 

σ = 0.05 Å2 

CH 3

E
act =2.4 eV

 

Eact=1.6 eV 

CH 3

σ = 1.3 Å2 

H 
Eact=1.7 eV 
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Chemical Erosion at elevated temperatures 

• „Basic“ understanding and modeling of chemical erosion 
• First modeling attempts using MD codes 

M.Balden, J.Roth (2000) 

? Shift of erosion maximum with energy. (Different erosion products) 
? Flux dependence of chemical erosion 
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chemical erosion 

•  chemical erosion originates from the formation and release of 
volatile molecules in the interaction of incident plasma particles 
and target atoms. 

•  in fusion application the formation of hydrocarbons in the 
interaction of hydrogen atoms with carbon surfaces is the 
dominant example of chemical erosion. 

•  as chemical reactions are involved, chemical erosion shows a 
strong temperature dependence in contrast to physical 
sputtering. 

•  chemical erosion can occur with low-energy ions or thermal 
atoms and does not require a threshold energy. 

•  erosion will only take place at the very surface (1.4 nm 
pentration depth) or at the end of range of energetic particles.   
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Chemical Sputtering 

 Bombardment of carbon by hydrogen 
ions 

 Bombardment of carbon by noble gas 
ions in the presence of atomic 
hydrogen 

 Bombardment of carbon by noble gas 
ions in the presence of molecular 
oxygen (or water) 

 Etching of silicon by fluorine plasmas 
(this is by far the most important 
industrial plasma process) 

•  Chemical Sputtering is a process whereby ion bombardment 
causes or allows a chemical reaction to occur which produces 
a particle that is weakly bound to the surface and hence easily 
desorbs in the gas phase. 
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it is not chemical erosion 
H0 at T > 400 K with a max. at 
≈ 650 K – 800 K 

it is not physical sputtering 
energetic ions E > Eth,  
no chemistry 

but its chemical sputtering 
hydrogen ions, low-T, low-E 

Data: M. Balden and J. Roth, J. Nucl. Mater. 280 (2000) 39–44  

Chemical Sputtering 
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volatile species 

a-C:H film:       carbon       hydrogen 

2.    H° passivates broken bonds 

1.  ions break C–C bonds 

Repetition of 1 and 2 

 

3.  volatile hydrocarbons 

diffusion to the surface  

desorption 

ions 

H° 
chemical sputtering mechanism 

Chemical Sputtering 
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Erosion of a-C:H layers 

Comparison of simple physical 
sputtering (blue symbols) due to 
Ar ions 
with 
erosion due to simultaneous 
interaction of H and Ar+ (green 
symbols). 

Simultaneous interaction leads to: 
•  Erosion even below threshold for physical 

sputtering (threshold energy for physical 
sputtering ≈ 60 eV) 

•  Enhanced erosion above 200 eV  

•  Erosion at 20 eV  pure chemical erosion 
 ⇒ ‘chemical sputtering‘ 

Chemical Sputtering 
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M. Schlüter, J. Nucl. Mater. 376, 33–37 (2008). 

•  Temperature dependence 
similar as for chemical 
erosion 

Chemical Sputtering 

Temperature dependence 

•  Radiation damage 
enhances chemical 
reactivity 

•  Value at Tmax is larger than 
sum of chemical erosion 
and low temperature 
chemical sputtering 
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Chemical Sputtering 
•  Chemical Sputtering is a process whereby ion bombardment 

causes or allows a chemical reaction to occur which produces a 
particle that is weakly bound to the surface and hence easily 
desorbs in the gas phase. 

•  As for chemical erosion a basic model exists but there are still 
open questions: 

•  temperature dependence of the erosion 
maximum not understood 

•  decrease in erosion rate at high fluxes not under 
stood 
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Radiation enhanced sublimation 

•  At high temperatures graphite exhibits an exponential increase 
in the erosion rate during energetic particle impact that can not 
be explained by sublimation 

K. Schmid, J. Roth, J. Nucl. Mater. 313-316, 302 (2003) 

 carbon self sputtering 

 around 1000 K onset of 
enhanced sputtering 
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Radiation enhanced sublimation 

•  Arrhenius activation energies 
are well below the graphite 
sublimation energy. 

•  Process occurs for both inert 
and reactive sputtering species 

Exponential fits yield activation energies 

•  Experiments indicate that 
eroded species have thermal 
energies 



K. Schmid 2009 

Radiation enhanced sublimation 

RES mechanism 
•  Energetic ion bombardment generates vacancy/interstitial pairs (Frenkel pairs) 

•  vacancies  & interstitials are highly mobile (diffusion) at elevated temperatures 

•  Interstitials annihilate with vacancies and at the surface where they can sublime 

•  Vacancies annihilate with Interstitials and at the surface 

 Diffusion trapping model describes RES: 

 Net RES erosion flux is given by the diffusive flux of 
interstitials to the surface 

slower 
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Radiation enhanced sublimation 

•  Diffusion trapping model 
quantitatively describes RES 

•  Damage profile calculated by 
TRIM. 

•  Under fusion conditions the influence 
of RES is not very pronounced: 

 At high fluxes the vacancy concentration 
becomes very high leading to fast 
annihilation of the more mobile 
interstitials. 

 For low particle energies close to the 
damage threshold no Frenkel pairs are 
created. 
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Radiation enhanced sublimation 

•  At high temperatures graphite exhibits an exponential increase 
in the erosion rate during energetic particle impact that can not 
be explained by sublimation 

•  A model using the sublimation of weakly bonded surface 
defects, quantitatively describe the process. 

•  Similar effects are also seen for metallic targets at very high 
fluxes and temperatures.  more relevant for fusion. 
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Impact of impurities on fusion plasmas 

•  As atoms are eroded from the first wall they enter the plasma 

•  In the plasma they are ionized and transported throughout the 
machine. 

•  What how does that affect the plasma ? 
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Impact of impurities on fusion plasmas 

   ≥ 

             + 

where Efus is the α particle heating, c1 = 5.4•10-37 Wm3keV-1/2, and  
Zeff = ΣfiZi

2 is the effective plasma charge 

In 1957 Lawson introduced power balances: 

Break-even:  the fusion power equals the loss by radiation, and by   
 transport (diffusion, convection, charge-exchange): 

with nD= nT= n/2, and Ti =Te =T we find a condition for the fusion product 
nτT: 
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Ignition Criteria 

•  Ignition: The neutrons leave the plasma, the α-particles 
are confined and heat it. Only their energy should enter 
the balance! Efus → Eα 

Impact of impurities on fusion plasmas 
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Temperature (keV) 

•  The α-particles also dilute the plasma, as they are intrinsically coupled to 
fusion power (3.53•1011 atoms/s/W). 

⇒ upper limit for particle confinement time 

Impact of impurities on fusion plasmas 

For steady state conditions, power 
and particle balances 
have to be solved simultaneously . 
 closed curves, parameterized by 
the He-confinement time 

ρHe α τ*He/ τE 

τ*He global particle confinement time 

τE energy confinement time 

here: Zeff = 1(no other impurities) 

D. Reiter et al. 
Nuclear Fusion 30 (10), 2141 (1990). 
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• Other impurities have a similar impact as He 

  No ignition for core W conc. > 10-4 

Ignition condition 

PR 

Impact of impurities on fusion plasmas 
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Material selection for ITER  

Impact of impurities on fusion plasmas 
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Impact of impurities on fusion plasmas 

•  As atoms are eroded from the first wall they enter the plasma 

•  In the plasma they are ionized and transported throughout the 
machine. 

•  In the plasma they radiate energy through line radiation and 
Bremsstrahlung. 

•  They also dilute the plasma. 

•  The radiative loss of energy from the plasma and its dilution 
through these impurities has fundamental implications for the 
operation of a fusion reactor! 

•  The erosion of wall components poses a lifetime problem 

•  The co-deposition of impurities (mainly C) with fuel ions poses 
a radiation hazard 


